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1. Introduction 

 Optimization is a fundamental assumption in economics: companies minimize costs, 

individuals maximize utility, and firms maximize profits. Economists take for granted that 

decision-makers act rationally, weighing costs and benefits to find the best solution. While the 

idea is not incredible, optimization is a rather broad assumption, especially when it forms the 

foundation for modern economic theory.   

 We are interested in testing the assumption of optimization. We designed an experiment 

to examine the ability of individuals to behave rationally and optimize.  Specifically, we created a 

game in Microsoft Excel, which places the user in the shoes of a lifeguard who needs to reach a 

drowning victim in the ocean.  In this paper, we will discuss the lifeguard problem in more detail, 

including the underlying mathematics, and how to analyze the test subject’s performance.  We 

also illustrate how we created this game using Visual Basic for Applications and in a future 

paper will discuss the actual empirical results of our experiment.  We then offer a discussion of 

potential results and what they mean for economics and behavioral economics. 

 

2. Literature Review 

Previous research shows conflicting answers to the question of whether or not people 

optimize intuitively.  Helbing (1996) found that gas-kinetic equations can be used to model 

vehicular traffic flow.  The only fundamental difference in the two models was that in bottleneck 

situations, gas-kinetic scenarios actually speed up traffic whereas vehicular traffic slows down.  

This discrepancy is due to the ability of gas-kinetic systems to allocate more resources to 
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bottlenecks in order to speed the process up.  The fact that individuals naturally mimic this 

efficient movement pattern suggests that drivers can optimize and move efficiently, too.   

Meanwhile, Braess’s Paradox suggests that traffic does not move with inherent 

efficiency.  The paradox explains that sometimes adding a lane to a busy highway can actually 

slow down traffic, or alternatively closing a roadway can help traffic flow more efficiently.  This 

counterintuitive reality stems from game theory, in particular the inability to distinguish between 

an equilibrium solution and the optimal solution.    

Outside of the field of traffic analysis, Helbing (2001) offers further support for human 

optimization when he observes that individuals hiking in forests find a compromise between 

comfort (well-kept trails) and efficiency (more direct pathways) when asked to quickly reach an 

end destination.  Though there is no specific metric to measure if they achieved optimality, this 

behavioral tendency to consider multiple dimensions of information when choosing a path does 

suggest humans are, if nothing else, seeking to maximize utility or minimize discomfort.  

On the other hand, it appears that when individuals are faced with a decision between 

two items, one of which has a higher immediate payoff but whose utility decreases faster than 

the other item, individuals will behave sub-optimally, over-preferencing the instantly-gratifying 

item (Herrnstein and Prelec, 1991).  This example can be extended to scenarios such as 

aversion to exercise.  Exercising is not as immediately-gratifying as alternative activities, but 

over time will become more enjoyable as the individual gets in better shape, increases self-

esteem, etc.  However, many individuals will settle on more sedentary lifestyles because the 

immediate payoff is greater than the discomfort of exercising.  Herrnstein and Prelec (1991) find 

evidence of melioration (failing to optimize because of a focus on the immediate payoff rather 

than the globally optimal choice) in computer-based experiments. 
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Neth, Sims, and Gray (2005) try eliminating melioration by providing participants with 

efficiency feedback on their performance, under the presumption that this added information will 

preclude the participants from falling into suboptimal behavioral patterns.  On the contrary, 

however, nineteen of the twenty-two participants deliberately choose outcomes that reflect 

inefficiency caused by melioration.  Thus, regardless of having sufficient information to behave 

optimally, individuals still make irrational decisions when faced with immediate versus delayed 

payoffs.   

Although the previous studies offer some insight into the nature of human optimization, 

the results seem at odds with one another.  Furthermore, the body of work is too sparse to get a 

sense of whether or not humans optimize.  To offer further evidence and to add a nuance to the 

question of optimization, we implement the lifeguard problem in our experiment to analyze 

whether or not people behave optimally.   

 

3. The Lifeguard Problem 

 The lifeguard problem is easy to describe.  From an aerial perspective, as the lifeguard 

you have a horizontal and vertical distance to cover.  When moving vertically, however, 

eventually you will hit the shoreline.  When this transition occurs, your speed will decrease 

because you cannot swim as fast as you can run.  Knowing that seconds can mean the 

difference between life and death, you feel the urge to reach the drowning victim by the quickest 

path possible.  Maybe you try to take the path that is the shortest distance because if you cover 

less ground, surely you will get there faster.  On the other hand, what if swimming takes much, 

much longer than running?  Indeed, maybe you are better suited to run on the beach as much 

as possible and dive into the water at the last second.  Or, the quickest path could be 

somewhere in between these two extremes.  Will you find this shortest path through instinct and 
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intuition alone? Before addressing this question, we analyze the mathematics that explains the 

lifeguard problem. 

3.1 Snell’s Law, Fermat’s Principle, and Light Propagation 

The lifeguard problem is modeled after optical physics and the propagation of light 

waves.  Snell’s Law and Fermat’s Principle both offer mathematical descriptions of how light 

waves find the path of least time when travelling through different media (for example, air and 

water). In Figure 1, the transition point from one medium to the other is that which satisfies the 

equation ୱ୧୬ ఏభ
ୱ୧୬ ఏమ

ൌ భ
మ

 , where ݒ is the velocity of travel in the i’th medium and ߠ is the angle 

between the line of travel and the normal line (the line which is perpendicular to the interface or 

the beach in the lifeguard problem) in the i’th medium. 

v1 > v2

b 

c 

a 

θ1 

θ2 

o 

 

Figure 1: Understanding the Lifeguard Problem 
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Starting from point a in Figure 1, the dashed line shows the least-time path, which 

depends on the speeds of travel in the two media. A faster lifeguard would have an optimal path 

with an entry point closer to point c. The path of least distance (a to b) seems attractive because 

it economizes on the total distance traveled, but too much time is spent in the water. It is optimal 

only when v1 = v2. The path of least water (a to c to b) has the virtue of minimizing the time 

spent in the water, but the increase in total distance traveled is not worth it. Light correctly 

solves the problem, and we will test whether humans do the same.  

Ganem (1998) supposes that human navigation (walking and running) can be modeled 

with optical principles and uses them to teach Snell’s Law.  Ganem’s participants appear to 

have been exposed to the concept of least-time travel before participating. In our experiment, 

subjects will not be made explicitly aware of either the problem or the optimizing solution. Our 

experiment is designed to test how well humans can solve this problem. 

3.2 Continuous and Discrete Versions of the Problem  

In real life, the problem is a continuous one because the individual can change direction 

at any specific point and take any angled path he or she desires, but implementing the problem 

in Microsoft Excel required a discrete specification of the problem.  Since the user may only 

travel in one-cell increments, the lifeguard can move left, right, up, down, or diagonally at a 45 

degree angle.  Furthermore, the entry point into the water must be an integer, since the user 

cannot change direction halfway through the cell.  Although the optimal path in the discrete 

version and the continuous version will be different in most cases, the evaluation of speeds and 

distance to travel take place in either instance.  We will discuss both versions of the problem.   

3.3 Solving the Continuous Problem with Calculus 

 Though the lifeguard problem can be solved trigonometrically using Snell’s law, we 

approached the problem using calculus.  When it comes to finding the shortest path, only a few 
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factors really matter: the vertical distance to cover in the sand, the vertical distance in the water 

to cover, the horizontal distance to cover, your running speed, your swimming speed, and where 

you choose to enter the water. In equations, these variables will be referred to as a, b, c, Vs, 

Vw, and x respectively. Figure 2 illustrates the problem and makes clear that x, the entry point, 

is the endogenous variable: the lifeguard’s path is determined by this choice. With this 

information defined, we can formulate an objective function, seeking to minimize the time to the 

victim. For the sake of simplicity, we assume at this time that no riptides or currents are present.   

 

 

Figure 2: The Lifeguard Problem 

 

Time spent running on the sand can be calculated by: 

Page 7 of 51 
 

ௌܶ ൌ
√ܽଶ  ଶݔ

ݏܸ
 



Page 8 of 51 
 

 Similarly, time spent in water can be calculated by:  

ௐܶ ൌ
ඥሺܿ െ ሻଶݔ  ܾଶ

ݓܸ
 

 Combining these two equations will give the total time function, which we may now 

structure as a minimization problem, denoted as: 

min
୶

T ൌ
√ܽଶ  ଶݔ

ݏܸ


ඥሺܿ െ ሻଶݔ  ܾଶ

ݓܸ
 

 To solve this problem, we can take the derivative with respect to the choice variable, and 

set that derivative equal to zero. The distance variables, a, b, and c, are exogenous, and so are 

the lifeguard’s running and swimming speeds (assuming that individuals will move as quickly as 

possible).  Thus, the only choice to make is where to enter the water, the variable we denote as 

x.  After simplification, we have: 

݀ܶ
݀ܺ

ൌ
ݔ

ଶܽ√ݏܸ  ଶݔ


ݔ െ ܿ
ඥሺܿݓܸ െ ሻଶݔ  ܾଶ

 

 Unfortunately, setting the right-hand side equal to zero and solving for x, given the other 

parameters yields a quartic equation whose roots are available via analytical formula, but the 

expression is extremely complicated and unwieldy.1   Consequently, we turned to an algorithmic 

method to solve for the optimal x.   

3.3.1 The Newton-Raphson (Steepest Descent) Algorithm 

We use the Newton-Raphson iterative method to approximate the root of the derivative 

of the total time function at zero, which will be the optimal entry point.  The procedure requires 

                                                 
1 The next step from the above equation involves squaring both sides and rearranging terms, the algebra 
of which leads us to the equation: ݔଶܸݓଶሾሺܿ െ ሻଶݔ  ܾଶሿ ൌ ሺܿ െ ଶሺܽଶݏሻଶܸݔ   .ଶሻݔ



an initial x value, which can be chosen arbitrarily.2  From the initial x, we create a recursive 

sequence defined by:ݔାଵ ൌ ݔ െ ሺ௫ሻ
ᇲሺ௫ሻ

 .  The resulting limit of the convergent sequence will be 

the root of the function.  Rather than formally prove the limit using analysis, however, we simply 

set a benchmark in our code that accepts the x value when the change in x is smaller than 

0.000000001.  Once this convergence criterion is met, we accept the x value as a reasonably 

close approximation to the exact optimal x or the optimal entry point for the lifeguard. 

3.3.2 The OptimalX Function 

 We coded the Newton-Raphson method into a function called OptimalX. This enables us 

to use the function in a cell in Excel. Essentially, the algorithm runs through a loop in Visual 

Basic until the change in x is less than our precision benchmark of 0.000000001.  It then outputs 

the optimal entry point into the cell where the user typed the function. We also wrote a function 

that takes any x value and outputs the time for that value. The full Visual Basic code for these 

functions can be found in the appendix of this paper. 

3.4 Solving the Discrete Problem 

 Since the game we created is a discrete version of the lifeguard problem, we had to 

create an alternative way of finding the optimal entry point that accounted for the discrete nature 

of the problem. Figure 3 makes clear how the discrete and continuous versions differ. A straight 

diagonal line from lifeguard to victim is not available. The lifeguard must move in discrete steps 

from one square to the next.   

                                                 
2 The algorithm will work more quickly if the initial x value is close to the root, but the process will work 
regardless. 
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Figure 3: The Discrete Version 

  

3.4.1 The OptimalXDiscrete and DiscreteTime Functions 

We wrote functions called optimalxdiscrete and discretetime to determine the optimal 

entry point and minimum time to the victim, given values of a, b, c, Vs, and Vw. The code for 

both functions is found in the appendix. 

 The discretetime function computes the time to the victim for any discrete entry point. It 

is based on the lifeguard moving to diagonal adjacent cells when possible to save time. In 

Figure 3, if the user chose the fifth cell from the left as the entry point, the code would compute 

the time according to the path in Figure 4. 

 

 

Figure 4: A Discrete Path 
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 The optimalxdiscrete function computes the time based on least water, then uses a loop 

to take one step back and compare that time to the previous best time. The loop continues 

running as long as the total time is falling and stops once total time rises. Figure 5 shows how 

the function would work for a problem with a = 0, b = 5, c = 20, vs = 1.2, vw = 1. The 

optimaldiscretex function starts at x = 20, then steps back in unit decrements until 14, when total 

time rises and we know we have found the optimal solution at 15. 

 

Figure 5: Total time given entry point. 

 

As Figure 5 shows, the discretetime function allows us to graph the distribution of time 

as a function of entry point in the discrete case.  It will also let us calculate the time it takes a 

subject to play the game in Excel and reach the victim without technology errors, such as 

mistaken clicks or system delays, by outputting the time assuming constant motion.  In other 

words, when we calculate the participant’s time to reach the victim, we will simply use the entry 

point and the other parameters listed above and place them in the total time equation: 
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ܶ ൌ
√ܽଶ  ଶݔ

ݏܸ


ඥሺܿ െ ሻଶݔ  ܾଶ

ݓܸ
 

Assuming constant speed seems reasonable, since one would expect a lifeguard to be running 

and swimming at all times, without hesitating or deliberating over the best path while the victim 

struggles to survive.   

 

3.4.2 Discrete Time Solutions 

 Unlike the continuous version of the problem, where optimal x rises as running speed 

goes up (given vs > vw), ceteris paribus, the discrete version’s optimal solution is a corner 

solution (least water) for vs/vw > 2.4142.  We set our running to swimming speed ratio at 5, so all 

of our discrete version trials yield corner solutions. This will make it easy to see if any of our 

subjects are optimizers.  If vs/vw < 2.4142, the optimal solution will be the path that enters the 

water at a point where the lifeguard may take a purely diagonal path in the water.   

  

4. Experimental Method 

4.1 Task and Apparatus 

Utilizing Visual Basic code, we designed a workbook in Microsoft Excel that allows users 

to play the lifeguard game, as shown in Figure 6.  
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Figure 6: LifeguardGame.xls  

The Excel file may be downloaded from <academic.depauw.edu/~hbarreto/working>. On 

open, you must click Enable Macros to play the game. The user clicks on the arrows to move 

the lifeguard (the black square) on the spreadsheet.   

Coded into this game are momentary delays after clicking, which simulate the time it 

takes to travel one square cell.  The appendix contains all of the game macros. The user can 

move left, right, up, down, or in a diagonal direction.  Diagonal moves, however, take about 1.4 

times as long as horizontal and vertical moves because they cover about 1.4 times as much 

distance.  Additionally, moves in the water will have a longer delay.  The experimenter has a 

great deal of control over this workbook.  He or she can designate any of the position variables 

(a, b, and c) and the speed variables (vs and vw), which in turn determine the delay after the 

user clicks on the arrows).   
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Upon reaching the victim, the player is informed of his or her success (as shown in 

Figure 7), and the next trial begins with the lifeguard and the victim in new locations.  To track 

the learning behavior of the user, each participant plays twenty trials of the game, with different 

positional parameters. We repeat sets of positional configurations (a, b, and c) to test if 

individuals perform better over time, indicating learning and improving performance. 

 

Figure 7: Lifeguard reaches the victim. 

 

4.2 Loss Aversion? 

In half of the trials, the lifeguard starts in the water and has to save a victim on the 

beach. We are interested in examining if users behave differently when they have to navigate 

through the water first.  It could be that when users feel themselves moving so slowly, they will 

be motivated to get out of the water as soon as possible.  It is also possible that there is no 

difference between fast/slow or slow/fast and users will play the same way in either setup.   

Testing for a difference in behavior depending on the order of the media is tantamount to 

a test of loss aversion. The discovery that many people seem to behave differently toward offers 

of expected gain versus expected loss is one of the earliest findings of behavioral and 
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experimental economics and it has been repeated many times. Consider this simple scenario: 

you receive $1,000 and then you are given the option of an additional $500 or a coin is flipped 

and you win $1,000 if the coin comes up heads or you get nothing if it’s tails. Most people 

choose the $500 with certainty. The paradox arises when the same individual is placed in a 

different situation. The player is given $2,000 and forced to choose between losing $500 or a 

coin is flipped and $1,000 must be paid if the coin comes up heads or nothing is lost if it’s tails. 

In tests, many subjects switch and opt for the risky choice instead of losing $500 with certainty. 

The contradiction lies in the fact that the exact same choice has been offered in both cases: 

$1,500 with certainty or a 50/50 chance of $2000. The key finding is that an individual is willing 

to bear more risk to avoid painful losses than when gains are considered. In other words, the 

way the choice is posed, even though it is the exact same choice, affects the decision. This 

finding has even been extended to the monkeys, who show the same risk aversion. For more 

detail on this claim, see Lauri Santos, “A monkey economy as irrational as ours,” TED talk, 

http://www.ted.com/talks/laurie_santos.html. The loss aversion example offered above is 

explained starting at the 10:50 mark. 

The internal contradiction expressed in loss aversion experiments, along with a variety of 

other similar scenarios (e.g., framing effects), have often been found in behavioral economics 

and used as evidence of less than perfectly rational decision making. It will be interesting to see 

if our subjects behave differently, even though the problem is formally identical, depending on 

whether they start in the water or the sand. 

 

4.3 The “Tracker” Sheet 

Meanwhile, the movements that the user makes are recorded in a hidden worksheet, 

titled “Tracker,” which the experimenter uses to compile the results.  This sheet serves as the 
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control panel for the experimenter.  From here, one can modify a number of dimensions in the 

experiment, including the running speed of the lifeguard, the swimming speed of the lifeguard, 

the position of the lifeguard relative to the victim, and the number of trials to use before ending 

the game.  Each trial has a different set of positional parameters, which the experimenter can 

modify in the designated rows.  The sheet also reports the optimal entry point and time for the 

given trial for the continuous and the discrete scenario.  Our version of the game only uses the 

discrete version of the situation; however, having the continuous optimal solution provides 

confirmation that everything is working properly.  The continuous optimal time will always be 

slightly less than or equal to the discrete time because the set of possible discrete times is a 

subset of the set of continuous times.   

We wrote a macro that reports the cell address after each move.  When the user makes 

a move, the tracker sheet moves down one row and records the user’s new cell address.  Upon 

completion of a trial, the move recorder shifts to the right one column.  The resulting output is a 

column for each trial that shows how the cell addresses change, with the total number of moves 

made reported at the top.  Given this information, the experimenter can calculate the user’s 

entry point for a given trial.  The default setup creates a beach that is fifty rows in height.  Thus, 

if the lifeguard starts on the sand, the entry point is the point at which The “Tracker” sheet reads 

a row of fifty.  The entry point is the column number of the previous move.  Figure 8 shows a 

sample screenshot of the “Tracker” worksheet after the user has played through three trials of 

the game. 
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Figure 8: A sample “Tracker” sheet. 

For example, in column K of Figure 8, we see the starting address for the user was row 

fifty-one and column fifty.  The user enters the water where row fifty-one becomes row fifty, the 

cells highlighted in green and yellow.  The column listing of the green cell reflects the entry 

point.  Looking at the list of parameters for trial #1 (listed on row nine columns F:I), we see the 

beach length (c) is twenty.  Furthermore, the user went from column fifty to column seventy 

before entering the water, thus the user travelled twenty columns, or the full width of the beach, 

before jumping in the water.  Consequently, the entry point for this particular round is twenty.  

The experimenter can continue calculating results in a similar fashion.    
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To recapitulate, the participant plays a game that simulates a beach rescue, with 

distance and speed conditions set by the experimenter.  The participant plays through twenty 

rounds of the game and his or her performance is recorded for the experimenter’s analysis.  Of 

particular interest to the researcher is the entry point into the water (the choice variable x) 

because, as mentioned previously, this decision is the only one which the user has control of 

and which determines how quickly the lifeguard reaches the victim. 

 

4.2 Procedure  

4.2.1 Pilot Testing  

Before delving into the official trials of our experiment, we decided to implement a pilot 

testing program to troubleshoot any programming errors and garner general feedback about the 

playability and experience of the lifeguard game.  We had six individuals come to the lab to play 

through our twenty trials and discuss their thoughts, including where they thought the game 

could be improved and where there were strengths we could build upon.  We were pleased with 

how smoothly the game went.  Most users reported that the game was fun and that we could 

easily increase the number of trials to thirty.  They also reported that they were engaged and 

trying to win. We also picked up on some errors in the way our reporting was set up.  We had 

network issues and struggled to compile individual results in a single workbook. Consequently, 

our old method of putting all of the worksheets into a master file as the users complete the 

game has been replaced with a method that allows the experimenter to compile the sheets and 

times into a workbook once everyone has completed the experiment.   

After playing the game and having a discussion with the participants, we dismissed the 

pilot group and examined the results, which appear mostly positive.  The completion times 

varied from 349 seconds to 555 seconds, with five of the six times falling in 400 seconds or less.  
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It is interesting to analyze the 555 second outlier, who later reported not even noticing a 

difference in running and swimming speeds in the game.  At this moment, it is difficult to 

ascertain how much of this inefficiency stemmed from an inability to optimize and how much 

was due to a misunderstanding of the game.  In fact, in the first two trials, this participant took 

the path of maximum time (most water).  Generally speaking, her strategy appeared to be to 

cover the vertical distance first, and then move horizontally to the victim, which systematically 

produced poor performances.  The other participants seemed to pick up on the fact that being in 

the water was very costly.  Indeed, one participant mentioned that her strategy eventually 

became: avoid the water.   

Though a pilot test, we ran the program in the same fashion as the actual experiment to 

be done in the fall of 2010. 

 4.2.2 The Experiment (to be done Fall 2010) 

Having successfully created an Excel implementation of the lifeguard problem, we will 

advertise and recruit students from DePauw University to come participate in our experiment.  

Individuals will come to a computer lab at the same time, where they will receive and sign an 

Informed Consent form.  We will then give instructions on how to play the game and allow the 

participants to move around on the sheet to get a feel for the controls and the difference 

between run and swim speed.  After this practice period is over, individuals will compete against 

one another, seeking to complete their set of twenty trials before everyone else.  Three gift 

cards will be awarded probabilistically according to the performance of the participants.  In other 

words, the top performer will have a much better chance of winning a gift card than the worst 

performer.  After completing the game, a survey will be administered asking individuals to report 

their strategies, perceived math ability, handedness, and demographic information.  Upon 
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completion, participants will be compensated, debriefed, and dismissed from the lab.  The 

process should take roughly thirty minutes.  We hope to conduct multiple rounds in this fashion.   

4.3 Evaluation Metrics 

 Once we have the subject’s chosen entry point for a particular trial, we need to know 

how well the individual performs.  Since we wrote the OptimalXDiscrete and DiscreteTime 

functions, this process becomes straightforward.  Our primary method of evaluating 

performance is the following quotient, which we will calculate for each subject for each trial of 

the experiment: 

ݕ݂݂ܿ݊݁݅ܿ݅݁݊ܫ ݁݃ܽݐ݊݁ܿݎ݁ܲ ൌ  
݁݉݅ܶݏᇱݎ݁ݏܷ െ ݈݁݉݅ܶܽ݉݅ݐܱ

݁݉݅ܶݔܽܯ
 

To calculate the user’s time, we decided to find the entry point and solve for the time, 

rather than actually time the user.  Meanwhile, participants will be rewarded according to their 

actual performance in the lab to keep them engaged and involved in the problem.  The decision 

to not time our participants eliminates time discrepancies that would arise from fast or slow 

clicking speeds and ability to navigate the interface, variables that we are not interested in since 

they do not have any relevance to the optimization problem of focus.  Thus, the first term in the 

numerator is the output of the DiscreteTime function with the entry point that the user chose.   

The second term in the numerator, OptimalTime, is obtained from the optimalxdiscrete 

function. Clearly, the lowest value the numerator can have is zero, when the subject chooses 

the least time entry point. 

MaxTime will either be the path of least distance or least water, depending on the ratio of 

run speed to swim speed.  In our trials the path of least distance is the slowest path because it 

involves more swimming, which is very time consuming relative to running.  We calculate both 

paths with the DiscreteTime function and pick the larger of the two times for the denominator of 
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our metric.  The distribution of time as a function of entry point for a sample trial is illustrated in 

Figure 9, where you may see that the path which involves the most swimming (entry point 0) 

results in the longest time. 

.  

Figure 9: A sample trial. 

 Putting the three components together, we can solve for our metric.  The resulting 

number represents how much the user missed the optimal time by, as a percentage of how 

much the user could possibly miss by.  We use this metric for a couple of reasons.  First, 

simpler metrics such as ை௧்
௦ᇲ௦்

   have a tendency to inflate as the time it takes to complete 

the trial increases.  The minimum time to reach the the victim is built into the numerator and the 

denominator, so an identical distribution of times simply shifted vertically will yield higher scores, 

ceteris paribus.  Also, the spread in the distribution of times is often small, so a score may look 

very impressive, but it doesn’t account for the fact that the user will get a time close to the 

optimal no matter what, by the nature of the trial.  We measure performance relative to the max 

time to account for this issue. 
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 To gain a better understanding of this metric, take the example above with the 

parameter values given in Figure 9.  In this situation, the optimal entry point is x = 15 (a path 

that allows the user to swim diagonally to the victim)3.  If a user chose a suboptimal path of 

running along the beach for thirteen cells before entering the water (x = 13), his or her resulting 

time, as calculated by the discretetime function would be 15.57107.  This time would be the first 

term in our metric.  Next, we calculate the optimal time by using the optimalxdiscrete function, 

and find the optimal time to be 14.57107.  This time would be the second term in our metric, the 

difference of the two terms composing the numerator of percentage inefficiency: 15.57107 െ

14.57107 ൌ 1.  Finally, we compute the denominator of the metric, the resulting time of the most 

inefficient path.  As previously mentioned, this time will either come from the least water path or 

the least distance path that involves the most water.  In our case, the former has a resulting time 

of 15, while the latter has a resulting time of 22.07107.  Thus, the maximum time is 22.07107.  

Putting these terms together, we solve for percentage inefficiency:  

ݕ݂݂ܿ݊݁݅ܿ݅݁݊ܫ ݁݃ܽݐ݊݁ܿݎ݁ܲ  ൌ ଵହ.ହଵିଵସ.ହଵ
ଶଶ.ଵ

ൌ 0.0453.  

In other words, the participant was 4.53% inefficient in this trial.  Continuing in this manner, we 

will calculate the metric for the participants in our study this fall.    

 

 

Evaluation of Results 

 Once we conduct the experiments and gather data, we will analyze three dimensions of 

the subjects’ performance: initial ability, learning, and survey results. 

 We are interested in innate ability to reach the victim quickly because this result reflects 

an individual’s ability to optimize instinctively.  The practice round should provide them with 

                                                 
3 Note that since vs/vw < 2.4142, the optimal path is not the path of least water. 
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enough experience to do well on the first trial, if individuals are optimizers.  Thus, the first trials 

will give us initial evidence for or against human rationality.   

 It is also worth examining the learning patterns of these individuals.  Presumably, if they 

understand the problem from the beginning, learning will be irrelevant and they will perform at a 

consistently high level.  If they struggle at first, however, do the participants improve their 

performance, or do they continue to make similar mistakes and perform poorly?  Sustained 

suboptimal performance would suggest that people cannot always be expected to act rationally.  

As stated above, we will also be able to test the condition of whether starting in the sand or the 

water affects learning patterns or ability. It should not, because the optimal path is the same for 

a particular positional configuration, regardless of whether the lifeguard is on the sand and the 

victim in the water or vice versa.  

 Though not the primary focus of our study, we will examine the survey data from our 

participants to see if any trends emerge.  For example, individuals who claim to be good at math 

may perform better at this task because they see some of the underlying mathematics that 

make up this problem.  Alternatively, they could perform worse because they overanalyze what 

is meant to be an intuitive situation.  With information about the participants, we can create 

models, which will predict how well an individual will do based on his or her background and 

survey information.  We will achieve this through ordinary least squares regression or more 

sophisticated statistical techniques of analyzing time series data.  It could be that only certain 

types of people optimize or perform well on this task, and having these statistical tools at our 

side will allow us to pick up on this nuance.        

Discussion 

We mention above that the range of times to the victim is somewhat small.  In other 

words, a lifeguard who takes an inefficient path will not be penalized by a large amount of time.  
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The critical reader may question why, practically speaking, it matters if individuals optimize 

when the spread of times is so small.  After all, even if the participant completely misses the 

problem, the lifeguard will still get to the victim within a few seconds of the optimal.  We asked 

ourselves the same question but hasten to remind you that in a situation such as an ocean 

rescue, time is critical, and seconds can be the difference between life and death.  Thus, the 

range may be small, but it is certainly not negligible. 

We also acknowledge that our experiment is still in its nascence, partially because future 

research can build upon what we are doing now.  For example, the workbook could be modified 

in a way that creates a tide in the water.  After speaking with lifeguarding schools, it appears 

that this environmental factor plays a significant role in where the lifeguard chooses to jump in 

because the lifeguard may use these conditions to his or her advantage.  Plus, having the victim 

drift with the current would make the scenario even more realistic.  We would also like to 

continue developing the workbook to make the game more realistic, providing more sensory 

feedback and more accurately instilling a sense of urgency in the user.  Finally, the decision to 

give the user feedback on his or her performance is still undecided.  After each round, we could 

let the participant know his or her inefficiency score, or we could leave them in the dark 

throughout the process.  The former method could contribute more strongly to learning but could 

also be an unrealistic addition, as lifeguards are probably not told how inefficient they are when 

they save a drowning victim.   

With these considerations in mind, we anxiously await the first round of our experiment.  

Designing the game and considering the problem fully turned out to be an impressive task, 

which is a credit to the intrinsically puzzling nature of the problem. We were amazed as we 

repeatedly found new, interesting aspects of the problem. On that same note, we still do not 

know what results to expect. Rather than worry about the mystery, however, we feel our 

research question remains an interesting one because the answer is not obvious. We would not 
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be surprised to find evidence for or against optimization. If our results show that individuals do 

not optimize, what becomes of the theories and models, which presuppose this condition?  If 

they do appear to optimize, we have only opened the door to test how widely-applicable this 

optimizing behavior is.  Modeling other behavioral optimization problems, such as finding the 

cheapest gasoline, given the distance you are from the gas station and your car’s gas mileage, 

can test how robust this behavior is.  For now, however, we maintain excitement and intellectual 

curiosity toward the current experiment, which we will begin to run this fall.    
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Appendix of Visual Basic Functions 

 

I. Optimization Functions 

 

OptimalX 

Function optimalx(a As Range, b As Range, c As Range, Vs As Range, Vw As 
Range) 

 

'This function takes parameters for the lifeguard problem and outputs the optimal 
solution 

'a = vertical distance the lifeguard is away on the sand from the shoreline 

'b = vertical distance the victim is away in the water from the shoreline 

'c = total horizontal distance from lifeguard to victim 

'vs = velocity on the sand, run speed 

'vw = velocity on the water, swim speed 

 

 

Dim X As Double 

Dim PreviousX As Double 

Dim I As Long 

Dim DeltaX As Double 

Dim FX As Double 

Dim dFX As Double 

DeltaX = 1 

X = c.Value / 2 'this is the initial value, X0 (and BTW the best initial, in general, 
because we don't know where X* is) 
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'check to see if victim directly north of lifeguard in which case 

'lifeguard should enter water and swim vertically to victim 

'FX in code below returns error because slope of function is not defined at zero 

If c.Value = 0 Then 

    optimalx = 0 

    Exit Function 

End If 

FX is the objective 
function and dFX 
is the derivative 
with respect to x. 

 

While DeltaX > 0.000000001 

    PreviousX = X 

    FX = X * Vw.Value * Sqr((c.Value - X) ^ 2 + b.Value ^ 2) - (c.Value - X) * Vs.Value 
* Sqr(a.Value ^ 2 + X ^ 2) 

    dFX = Vw.Value * Sqr((c.Value - X) ^ 2 + b.Value ^ 2) - X * Vw.Value * ((((c.Value 
- X) ^ 2 + b.Value ^ 2)) ^ (-1 / 2)) * (c.Value - X) + Vs.Value * Sqr(a.Value ^ 2 + X ^ 
2) - (c.Value - X) * Vs.Value * ((a.Value ^ 2 + X ^ 2) ^ (-1 / 2)) * X 

    X = X - FX / dFX 

    DeltaX = Abs(X - PreviousX) 

Wend 

 

'lifeguard in water/victim on sand case 

If a.Value < 0 And b.Value < 0 Then 

    X = c.Value - X 

End If 

optimalx = X 

 

End Function 
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TimetoVictim 

Function TimetoVictim(a As Range, b As Range, c As Range, Vs As Range, Vw As 
Range, X As Range) 

 

 

'This function takes parameters for the lifeguard problem and optimalx and outputs 
minimum time 

'a = vertical distance the lifeguard is away on the sand from the shoreline 

'b = vertical distance the victim is away in the water from the shoreline 

'c = total horizontal distance from lifeguard to victim 

'vs = velocity on the sand, run speed 

'vw = velocity on the water, swim speed 

'x = entry point (can be optimalx computed using the function above) 

 

Dim Reversex As Double 

 

'lifeguard in water/victim on sand case 

If a.Value < 0 And b.Value < 0 Then 

    Reversex = c.Value - X.Value 

    TimetoVictim = Sqr(b.Value ^ 2 + Reversex ^ 2) / Vs.Value + Sqr((c.Value - Reversex) ^ 
2 + a.Value ^ 2) / Vw.Value 

Else 

    TimetoVictim = Sqr(a.Value ^ 2 + X.Value ^ 2) / Vs.Value + Sqr((c.Value - X.Value) ^ 2 
+ b.Value ^ 2) / Vw.Value 

End If 

 

End Function 
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OptimalXDiscrete 

Function OptimalXDiscrete(a As Range, b As Range, c As Range, Vs As Range, Vw 
As Range) 

 

 

Dim TotalTime As Double 

Dim TotalTimeNew As Double 

Dim ResultsArray(1 To 2) As Double 

TotalTime = DiscreteTime(a, b, c, Vs, Vw, 0) 

Dim I As Integer 

Dim J As Integer 

J = 1 

'L in sand & V in water and the reverse, and L left of V 

If c.Value >= 0 Then 

For I = 1 To c 

TotalTimeNew = DiscreteTime(a, b, c, Vs, Vw, J) 

J = I + 1 

If TotalTimeNew < TotalTime Then 

    TotalTime = TotalTimeNew 

Else 

    GoTo FoundOptimal1 

End If 

Next 

 

FoundOptimal1: 

ResultsArray(1) = I - 1 

ResultsArray(2) = TotalTime 
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OptimalXDiscrete = ResultsArray 

Exit Function 

 

'L in sand & V in water and the reverse, and L right of V 

Else 'c.Value < 0 

J = -1 

For I = -1 To c Step -1 

 

TotalTimeNew = DiscreteTime(a, b, c, Vs, Vw, J) 

J = I - 1 

If TotalTimeNew < TotalTime Then 

    TotalTime = TotalTimeNew 

Else 

    GoTo FoundOptimal2 

End If 

Next 

 

FoundOptimal2: 

ResultsArray(1) = I + 1 

ResultsArray(2) = TotalTime 

OptimalXDiscrete = ResultsArray 

Exit Function 

 

End If 

 

End Functio 
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DiscreteTime 

 

Function DiscreteTime(a As Range, b As Range, c As Range, Vs As Range, Vw As 
Range, EntryPoint As Variant) As Variant 

 

Dim DiagonalMoves As Integer 

Dim VerticalMoves As Integer 

Dim PreDiscreteTime As Double 

Dim HorizontalWater As Integer 

Dim NumberDMovesSand As Integer 

Dim NumberVMovesSand As Integer 

Dim NumberHMovesSand As Integer 

 

If c < 0 And EntryPoint > 0 Then 

    'MsgBox "The victim is to the left of you, so you need to enter a negative value for 
entry point.", vbCritical, "Negative C Value Requires Negative Entry Point" 

    'Exit Function 

End If 

 

If a >= 0 Then 'conventional case, lifeguard starts on the sand 

 

'Determines the number of diagonal cells run on sand (up to entry point) 

If EntryPoint = a Then 

    NumberDMovesSand = Abs(a) 

    NumberVMovesSand = 0 

    NumberHMovesSand = 0 

Else 
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    If Abs(c) > Abs(a) Then 

        If Abs(EntryPoint) < Abs(a) Then 

            NumberDMovesSand = Abs(EntryPoint) 

            NumberVMovesSand = Abs(a) - Abs(EntryPoint) 

            NumberHMovesSand = 0 

        Else 

            NumberDMovesSand = Abs(a) 

            NumberVMovesSand = 0 

            NumberHMovesSand = Abs(EntryPoint) - Abs(a) 

        End If 

    Else 

        NumberDMovesSand = c 

        NumberVMovesSand = Abs(a) - Abs(c) 

        NumberHMovesSand = 0 

    End If 

End If 

 

 

'Determines the number of diagonal cells swum in water (past entry point) 

If EntryPoint = c Then 

    DiagonalMoves = 0 

Else 

    If Abs(c - EntryPoint) < Abs(b) Then 

        DiagonalMoves = Abs(c - EntryPoint) 

    Else 

        DiagonalMoves = Abs(b) 
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    End If 

End If 

 

'Since a diagonal move yields a move up, this calculates the consequent vertical 
moves 

VerticalMoves = Abs(b) - DiagonalMoves 

 

'Determines if the path will result in horizontal swimming (the case when the entry 
point 

'is early enough that a diagonal path of swimming will not hit the right borderline) 

If Abs(c - EntryPoint) < Abs(b) Or c = EntryPoint Then 

    HorizontalWater = 0 

Else 

    HorizontalWater = Abs(c - EntryPoint) - DiagonalMoves 

End If 

DiscreteTime = (NumberVMovesSand + NumberHMovesSand) / Vs + 
NumberDMovesSand * Sqr(2) / Vs + DiagonalMoves * Sqr(2) / Vw + VerticalMoves / 
Vw + HorizontalWater / Vw 

Exit Function 

 

Else 'handles lifeguard in the water 

 

'Determines the number of diagonal cells swum (up to entry point) 

If -Abs(EntryPoint) = a Then 

    DiagonalMoves = Abs(a) 

    HorizontalWater = 0 

    VerticalMoves = 0 

Else 
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    If Abs(c) > Abs(a) Then 

        If Abs(EntryPoint) < Abs(a) Then 

            DiagonalMoves = Abs(EntryPoint) 

            HorizontalWater = 0 

            VerticalMoves = Abs(a) - Abs(EntryPoint) 

        Else 

            DiagonalMoves = Abs(a) 

            HorizontalWater = Abs(EntryPoint) - Abs(a) 

            VerticalMoves = 0 

        End If 

    Else 

        DiagonalMoves = Abs(c) 

        HorizontalWater = 0 

        VerticalMoves = Abs(a) - Abs(c) 

    End If 

End If 

 

'Determines the number of diagonal cells to run (past entry point) 

If EntryPoint = c Then 

    NumberDMovesSand = 0 

Else 

    If Abs(c - EntryPoint) < Abs(b) Then 

        NumberDMovesSand = Abs(c - EntryPoint) 

    Else 

        NumberDMovesSand = Abs(b) 

    End If 
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End If 

 

'Since a diagonal move yields a move down, this calculates the consequent vertical 
moves 

NumberVMovesSand = Abs(b) - NumberDMovesSand 

 

'Determines if the path will result in horizontal running (the case when the entry 
point 

'is early enough that a diagonal path of running will not hit the right borderline) 

If Abs(c - EntryPoint) < Abs(b) Or c = EntryPoint Then 

    NumberHMovesSand = 0 

Else 

    NumberHMovesSand = Abs(c - EntryPoint) - NumberDMovesSand 

End If 

DiscreteTime = (NumberVMovesSand + NumberHMovesSand) / Vs + 
NumberDMovesSand * Sqr(2) / Vs + DiagonalMoves * Sqr(2) / Vw + VerticalMoves / 
Vw + HorizontalWater / Vw 

Exit Function 

 

 

End If 

 

End Function 
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II. Game Controller Functions 

'Macros below used to set up and play the lifeguard game 

 

'must set in Tracker sheet and used in BarretosPause, ColorBeach, and 

ClearLifeguard macros 

Public WaterDist As Integer 

Public SandDist As Integer 

Public DistanceTravelled As Double 

 

'set pause lengths 

Sub BarretosPause() 

' WaterDist not set here because set when called from buttons macro 

 

Dim PauseTime, Start, Finish, TotalTime 

 

If ActiveCell.Row <= WaterDist Then 'in the water 

    PauseTime = DistanceTravelled 

    Start = Timer 

    Do While Timer < Start + PauseTime 

        DoEvents 

    Loop 

    Finish = Timer 

    TotalTime = Finish - Start 

     

Else 'in the sand 

    PauseTime = DistanceTravelled / Sheets("Tracker").Cells(7, 2).Value 
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    Start = Timer 

    Do While Timer < Start + PauseTime 

        DoEvents 

    Loop 

    Finish = Timer 

    TotalTime = Finish - Start 

     

End If 

'track choices made 

'move # 

Sheets("Tracker").Cells(1, 10 + Sheets("Tracker").Cells(1, 10).Value).Value = 

Sheets("Tracker").Cells(1, 10 + Sheets("Tracker").Cells(1, 10).Value).Value + 1 

'move made 

Sheets("Tracker").Cells(1 + Sheets("Tracker").Cells(1, 10 + 

Sheets("Tracker").Cells(1, 10).Value).Value, 10 + Sheets("Tracker").Cells(1, 

10).Value).Value = ActiveCell.Address(ReferenceStyle:=xlR1C1) 

End Sub 

 

'move buttons 

Sub MoveUp() 

Application.Interactive = False 'blocks user input, must be used with DoEvents 

WaterDist = Sheets("Tracker").Cells(4, 4).Value 

DistanceTravelled = 1 

If ActiveCell.Row - 1 = WaterDist Then 'about to enter water from sand 

    DistanceTravelled = Sheets("tracker").Cells(7, 2).Value * (0.5 * DistanceTravelled 

+ 0.5 * DistanceTravelled / Sheets("Tracker").Cells(7, 2).Value) 
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End If 

BarretosPause 

ClearLifeguard 

    ActiveCell.Offset(-1, 0).Select 

Lifeguard 

Application.Interactive = True 

If Cells(Sheets("Tracker").Cells(6, 9).Value, Sheets("Tracker").Cells(6, 

8).Value).Address = ActiveCell.Address Then 

    MsgBox "Saved!", vbCritical, "Success!" 

    ClearLifeguard 

    NextTrial 

End If 

End Sub 

Sub MoveRight() 

Application.Interactive = False 'blocks user input, must be used with DoEvents 

WaterDist = Sheets("Tracker").Cells(4, 4).Value 

DistanceTravelled = 1 

BarretosPause 

ClearLifeguard 

    ActiveCell.Offset(0, 1).Select 

Lifeguard 

Application.Interactive = True 

If Cells(Sheets("Tracker").Cells(6, 9).Value, Sheets("Tracker").Cells(6, 

8).Value).Address = ActiveCell.Address Then 

    MsgBox "Saved!", vbCritical, "Success!" 

    ClearLifeguard 
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    NextTrial 

End If 

End Sub 

Sub MoveDiagonalUpRt() 

Application.Interactive = False 'blocks user input, must be used with DoEvents 

WaterDist = Sheets("Tracker").Cells(4, 4).Value 

DistanceTravelled = Sqr(2) 

If ActiveCell.Row - 1 = WaterDist Then 'about to enter water from sand 

    DistanceTravelled = Sheets("tracker").Cells(7, 2).Value * (0.5 * DistanceTravelled 

+ 0.5 * DistanceTravelled / Sheets("Tracker").Cells(7, 2).Value) 

End If 

BarretosPause 

ClearLifeguard 

    ActiveCell.Offset(-1, 1).Select 

Lifeguard 

Application.Interactive = True 

If Cells(Sheets("Tracker").Cells(6, 9).Value, Sheets("Tracker").Cells(6, 

8).Value).Address = ActiveCell.Address Then 

    MsgBox "Saved!", vbCritical, "Success!" 

    ClearLifeguard 

    NextTrial 

End If 

End Sub 

Sub MoveDiagonalDownRt() 

Application.Interactive = False 'blocks user input, must be used with DoEvents 

WaterDist = Sheets("Tracker").Cells(4, 4).Value 
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DistanceTravelled = Sqr(2) 

BarretosPause 

ClearLifeguard 

    ActiveCell.Offset(1, 1).Select 

Lifeguard 

Application.Interactive = True 

If Cells(Sheets("Tracker").Cells(6, 9).Value, Sheets("Tracker").Cells(6, 

8).Value).Address = ActiveCell.Address Then 

    MsgBox "Saved!", vbCritical, "Success!" 

    ClearLifeguard 

    NextTrial 

End If 

End Sub 

Sub MoveDown() 

Application.Interactive = False 'blocks user input, must be used with DoEvents 

WaterDist = Sheets("Tracker").Cells(4, 4).Value 

DistanceTravelled = 1 

BarretosPause 

ClearLifeguard 

    ActiveCell.Offset(1, 0).Select 

Lifeguard 

Application.Interactive = True 

If Cells(Sheets("Tracker").Cells(6, 9).Value, Sheets("Tracker").Cells(6, 

8).Value).Address = ActiveCell.Address Then 

    MsgBox "Saved!", vbCritical, "Success!" 

    ClearLifeguard 
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    NextTrial 

End If 

If Cells(Sheets("Tracker").Cells(6, 9).Value, Sheets("Tracker").Cells(6, 

8).Value).Address = ActiveCell.Address Then MsgBox "Saved!", vbCritical, 

"Success!" 

End Sub 

Sub MoveDiagonalDownLt() 

Application.Interactive = False 'blocks user input, must be used with DoEvents 

WaterDist = Sheets("Tracker").Cells(4, 4).Value 

DistanceTravelled = Sqr(2) 

BarretosPause 

ClearLifeguard 

    ActiveCell.Offset(1, -1).Select 

Lifeguard 

Application.Interactive = True 

If Cells(Sheets("Tracker").Cells(6, 9).Value, Sheets("Tracker").Cells(6, 

8).Value).Address = ActiveCell.Address Then 

    MsgBox "Saved!", vbCritical, "Success!" 

    ClearLifeguard 

    NextTrial 

End If 

End Sub 

Sub MoveLeft() 

Application.Interactive = False 'blocks user input, must be used with DoEvents 

WaterDist = Sheets("Tracker").Cells(4, 4).Value 

DistanceTravelled = 1 
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BarretosPause 

ClearLifeguard 

    ActiveCell.Offset(0, -1).Select 

Lifeguard 

Application.Interactive = True 

If Cells(Sheets("Tracker").Cells(6, 9).Value, Sheets("Tracker").Cells(6, 

8).Value).Address = ActiveCell.Address Then 

    MsgBox "Saved!", vbCritical, "Success!" 

    ClearLifeguard 

    NextTrial 

End If 

End Sub 

Sub MoveDiagonalUpLt() 

Application.Interactive = False 'blocks user input, must be used with DoEvents 

WaterDist = Sheets("Tracker").Cells(4, 4).Value 

DistanceTravelled = Sqr(2) 

If ActiveCell.Row - 1 = WaterDist Then 'about to enter water from sand 

    DistanceTravelled = Sheets("tracker").Cells(7, 2).Value * (0.5 * DistanceTravelled 

+ 0.5 * DistanceTravelled / Sheets("Tracker").Cells(7, 2).Value) 

End If 

BarretosPause 

ClearLifeguard 

    ActiveCell.Offset(-1, -1).Select 

Lifeguard 

Application.Interactive = True 
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If Cells(Sheets("Tracker").Cells(6, 9).Value, Sheets("Tracker").Cells(6, 

8).Value).Address = ActiveCell.Address Then 

    MsgBox "Saved!", vbCritical, "Success!" 

    ClearLifeguard 

    NextTrial 

End If 

End Sub 

 

 

'initializes the game 

Sub Start() 

ActiveSheet.Unprotect 

Cells.Clear 

ColorBeach 

'clear old tracking data 

Sheets("Tracker").Range(Sheets("Tracker").Columns(10), 

Sheets("Tracker").Columns(100)).ClearContents 

'Trial 1 

Sheets("Tracker").Cells(1, 10).Value = 1 

'put down victim 

Cells(Sheets("Tracker").Cells(6, 9).Value, Sheets("Tracker").Cells(6, 8).Value).Select 

ActiveCell.Interior.ColorIndex = 3 

'put down lifeguard 

Cells(Sheets("Tracker").Cells(5, 9).Value, Sheets("Tracker").Cells(5, 8).Value).Select 

Cells.Locked = True 

Lifeguard 
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'put away the Start button 

ActiveSheet.Buttons("Button 1").Left = Columns(250).Left 

ActiveSheet.Protect , AllowFormattingCells:=True 

Sheets("Tracker").Cells(2, 6).Value = Timer 

End Sub 

Sub reset() 

Start 

ActiveSheet.Unprotect 

'show the Start button 

ActiveSheet.Buttons("Button 1").Left = Columns(120).Left 

ActiveSheet.Protect , AllowFormattingCells:=True 

End Sub 

Sub Lifeguard() 

ActiveCell.Interior.ColorIndex = 1 

End Sub 

Sub ClearLifeguard() 

WaterDist = Sheets("Tracker").Cells(4, 4).Value 

If ActiveCell.Row <= WaterDist Then 

ActiveCell.Interior.ColorIndex = 8 

Else 

ActiveCell.Interior.ColorIndex = 19 

End If 

End Sub 

 

Sub NextTrial() 

ActiveSheet.Unprotect 
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'update trial number 

Sheets("Tracker").Cells(1, 10).Value = Sheets("Tracker").Cells(1, 10).Value + 1 

'sheet uses VLOOKUP to use trial # to get parameters for that trial 

'check to see if game over 

If Sheets("Tracker").Cells(1, 10).Value > Sheets("Tracker").Cells(1, 9).Value Then 

    Sheets("Tracker").Cells(2, 7).Value = Timer 

    MsgBox "You must be tired! Nice work. Game over." 

     

    Exit Sub 

End If 

'put down victim 

Cells(Sheets("Tracker").Cells(6, 9).Value, Sheets("Tracker").Cells(6, 8).Value).Select 

ActiveCell.Interior.ColorIndex = 3 

'put down lifeguard 

Cells(Sheets("Tracker").Cells(5, 9).Value, Sheets("Tracker").Cells(5, 8).Value).Select 

Cells.Locked = True 

Lifeguard 

ActiveSheet.Protect , AllowFormattingCells:=True 

End Sub 

 

Sub ColorBeach() 

WaterDist = Sheets("Tracker").Cells(4, 4).Value 

SandDist = Sheets("Tracker").Cells(5, 4).Value 

For I = 1 To WaterDist 

Rows(I).Interior.ColorIndex = 8 'light blue 

Next 
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For I = I To WaterDist + SandDist 

Rows(I).Interior.ColorIndex = 19 'light yellow 

Next 

End Sub 

 

 

'makes square cells -- 0.1 cm = 3 pixels 

'Source: http://blogs.msdn.com/b/excel/archive/2006/09/06/743902.aspx 

'visited July 7, 2010 

Sub SquareCells() 

ActiveSheet.Unprotect 

Dim desired As Double, looper As Integer 

cm = Application.InputBox("Enter Square Length in Cm", Type:=1) 

If cm = False Then Exit Sub 

desired = cm * (0.393700787401575) * 72 

Application.ScreenUpdating = False 

For looper = 1 To 200 

ActiveSheet.Columns.ColumnWidth = _ 

desired * ActiveSheet.Columns.ColumnWidth / [A1].Width 

ActiveSheet.Columns.RowHeight = _ 

desired * ActiveSheet.Columns.RowHeight / [A1].Height 

If [A1].Height = [A1].Width Then Exit For 

Next 

Application.ScreenUpdating = True 

End Sub 
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'makes lifeguard chart axes the same 

'Source: Jon Peltier 

'http://peltiertech.com/Excel/Charts/SquareGrid.html 

'visited July 8, 2010 

Sub MakePlotGridSquareOfActiveChart() 

'added this line to work on my chart 

    ActiveSheet.ChartObjects("Chart 9").Activate 

            With ActiveChart.Axes(xlValue) 

                .MaximumScaleIsAuto = True 

                .MinimumScaleIsAuto = True 

                .MajorUnitIsAuto = True 

            End With 

            With ActiveChart.Axes(xlCategory) 

                .MaximumScaleIsAuto = True 

                .MinimumScaleIsAuto = True 

                .MajorUnitIsAuto = True 

            End With 

'end my addition 

         

    MakePlotGridSquare ActiveChart, True 

 

Cells(1, 12).Select 

End Sub 

 

Page 47 of 51 
 



'not used 

Sub MakePlotGridSquareOfAllCharts() 

    Dim myChartObject As ChartObject 

    For Each myChartObject In ActiveSheet.ChartObjects 

        MakePlotGridSquare myChartObject.Chart 

    Next 

End Sub 

 

Sub MakePlotGridSquare(myChart As Chart, Optional bEquiTic As Boolean = False) 

     

    Dim plotInHt As Integer, plotInWd As Integer 

    Dim Ymax As Double, Ymin As Double, Ydel As Double 

    Dim Xmax As Double, Xmin As Double, Xdel As Double 

    Dim Ypix As Double, Xpix As Double 

 

    With myChart 

        ' get plot size 

        With .PlotArea 

            plotInHt = .InsideHeight 

            plotInWd = .InsideWidth 

        End With 

         

        Do 

            ' Get axis scale parameters and lock scales 

            With .Axes(xlValue) 

                Ymax = .MaximumScale 
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                Ymin = .MinimumScale 

                Ydel = .MajorUnit 

                .MaximumScaleIsAuto = False 

                .MinimumScaleIsAuto = False 

                .MajorUnitIsAuto = False 

            End With 

            With .Axes(xlCategory) 

                Xmax = .MaximumScale 

                Xmin = .MinimumScale 

                Xdel = .MajorUnit 

                .MaximumScaleIsAuto = False 

                .MinimumScaleIsAuto = False 

                .MajorUnitIsAuto = False 

            End With 

            If bEquiTic Then 

                ' Set tick spacings to same value 

                Xdel = WorksheetFunction.Max(Xdel, Ydel) 

                Ydel = Xdel 

                .Axes(xlCategory).MajorUnit = Xdel 

                .Axes(xlValue).MajorUnit = Ydel 

            End If 

         

            ' Pixels per grid 

            Ypix = plotInHt * Ydel / (Ymax - Ymin) 

            Xpix = plotInWd * Xdel / (Xmax - Xmin) 
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            ' Keep plot size as is, adjust max scales 

            If Xpix > Ypix Then 

                .Axes(xlCategory).MaximumScale = plotInWd * Xdel / Ypix + Xmin 

            Else 

                .Axes(xlValue).MaximumScale = plotInHt * Ydel / Xpix + Ymin 

            End If 

             

            ' Repeat if "something" else changed to distort chart axes 

            ' Don't repeat if we're within 1% 

        Loop While Abs(Log(Xpix / Ypix)) > 0.01 

         

    End With 

 

End Sub 

 

 

'buttons on Testing sheet 

Sub BaseGame() 

Cells(4, 2).Value = 0 

Cells(5, 2).Value = 5 

Cells(6, 2).Value = 20 

Cells(7, 2).Value = 2.5 

Cells(8, 2).Value = 1 

MakePlotGridSquareOfActiveChart 

End Sub 

 

Page 50 of 51 
 



Page 51 of 51 
 

Sub ClearPossibleMoves() 

Range("c31:G38").ClearContents 

End Sub 

 

 


